MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. AWS E410

C53800 bronze belongs to the copper alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 830
580
Tensile Strength: Yield (Proof), MPa 660
440

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 800
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
28
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.0
Embodied Energy, MJ/kg 64
28
Embodied Water, L/kg 420
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
500
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 19
7.5
Thermal Shock Resistance, points 31
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 85.1 to 86.5
0 to 0.75
Iron (Fe), % 0 to 0.030
82.2 to 89
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.030
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0