MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. S44635 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.3
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 470
450
Tensile Strength: Ultimate (UTS), MPa 830
710
Tensile Strength: Yield (Proof), MPa 660
580

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
22
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
4.4
Embodied Energy, MJ/kg 64
62
Embodied Water, L/kg 420
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
810
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 19
4.4
Thermal Shock Resistance, points 31
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
61.5 to 68.5
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.030
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 13.1 to 13.9
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0