MakeItFrom.com
Menu (ESC)

C54400 Bronze vs. CC382H Copper-nickel

Both C54400 bronze and CC382H copper-nickel are copper alloys. They have 66% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C54400 bronze and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
53
Tensile Strength: Ultimate (UTS), MPa 330 to 720
490

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 1000
1180
Melting Onset (Solidus), °C 930
1120
Specific Heat Capacity, J/kg-K 370
410
Thermal Conductivity, W/m-K 86
30
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 19
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
41
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.9
5.2
Embodied Energy, MJ/kg 48
76
Embodied Water, L/kg 340
290

Common Calculations

Stiffness to Weight: Axial, points 6.8
8.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 10 to 22
15
Strength to Weight: Bending, points 12 to 20
16
Thermal Diffusivity, mm2/s 26
8.2
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 85.4 to 91.5
62.8 to 68.4
Iron (Fe), % 0 to 0.1
0.5 to 1.0
Lead (Pb), % 3.5 to 4.5
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0.010 to 0.5
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 3.5 to 4.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 1.5 to 4.5
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0