MakeItFrom.com
Menu (ESC)

C54400 Bronze vs. Grade 9 Titanium

C54400 bronze belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C54400 bronze and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 330 to 720
700 to 960

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 1000
1640
Melting Onset (Solidus), °C 930
1590
Specific Heat Capacity, J/kg-K 370
550
Thermal Conductivity, W/m-K 86
8.1
Thermal Expansion, µm/m-K 18
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.9
36
Embodied Energy, MJ/kg 48
580
Embodied Water, L/kg 340
150

Common Calculations

Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 10 to 22
43 to 60
Strength to Weight: Bending, points 12 to 20
39 to 48
Thermal Diffusivity, mm2/s 26
3.3
Thermal Shock Resistance, points 12 to 26
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 85.4 to 91.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 3.5 to 4.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0.010 to 0.5
0
Tin (Sn), % 3.5 to 4.5
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 1.5 to 4.5
0
Residuals, % 0 to 0.5
0 to 0.4