MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. AISI 418 Stainless Steel

C60800 bronze belongs to the copper alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 55
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Shear Strength, MPa 290
680
Tensile Strength: Ultimate (UTS), MPa 390
1100
Tensile Strength: Yield (Proof), MPa 150
850

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 210
770
Melting Completion (Liquidus), °C 1060
1500
Melting Onset (Solidus), °C 1050
1460
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 18
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 48
41
Embodied Water, L/kg 360
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
170
Resilience: Unit (Modulus of Resilience), kJ/m3 94
1830
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
38
Strength to Weight: Bending, points 14
29
Thermal Diffusivity, mm2/s 23
6.7
Thermal Shock Resistance, points 14
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 92.5 to 95
0
Iron (Fe), % 0 to 0.1
78.5 to 83.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5
Residuals, % 0 to 0.5
0