MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. AISI W5 Steel

C60800 bronze belongs to the copper alloys classification, while AISI W5 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is AISI W5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 390
600 to 2360

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
45
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.3
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 48
21
Embodied Water, L/kg 360
48

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
21 to 84
Strength to Weight: Bending, points 14
20 to 50
Thermal Diffusivity, mm2/s 23
12
Thermal Shock Resistance, points 14
20 to 78

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
1.1 to 1.2
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 92.5 to 95
0 to 0.2
Iron (Fe), % 0 to 0.1
96.6 to 98.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.1 to 0.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.1 to 0.4
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0
0 to 0.1
Residuals, % 0 to 0.5
0