MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. ASTM Grade LCA Steel

C60800 bronze belongs to the copper alloys classification, while ASTM grade LCA steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 55
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 390
500
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
150
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 14
18
Thermal Diffusivity, mm2/s 23
14
Thermal Shock Resistance, points 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 92.5 to 95
0 to 0.3
Iron (Fe), % 0 to 0.1
96.9 to 100
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Residuals, % 0 to 0.5
0 to 1.0