MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. AWS E120C-K4

C60800 bronze belongs to the copper alloys classification, while AWS E120C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 55
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 390
950
Tensile Strength: Yield (Proof), MPa 150
840

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 18
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.5
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.7
Embodied Energy, MJ/kg 48
23
Embodied Water, L/kg 360
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
160
Resilience: Unit (Modulus of Resilience), kJ/m3 94
1880
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
34
Strength to Weight: Bending, points 14
27
Thermal Diffusivity, mm2/s 23
11
Thermal Shock Resistance, points 14
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 92.5 to 95
0 to 0.35
Iron (Fe), % 0 to 0.1
92.1 to 98.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0 to 0.5
0 to 0.5