MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. EN 1.4466 Stainless Steel

C60800 bronze belongs to the copper alloys classification, while EN 1.4466 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is EN 1.4466 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 55
42
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
80
Shear Strength, MPa 290
440
Tensile Strength: Ultimate (UTS), MPa 390
640
Tensile Strength: Yield (Proof), MPa 150
280

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
28
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.9
5.0
Embodied Energy, MJ/kg 48
70
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
220
Resilience: Unit (Modulus of Resilience), kJ/m3 94
200
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
22
Strength to Weight: Bending, points 14
21
Thermal Diffusivity, mm2/s 23
3.7
Thermal Shock Resistance, points 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 92.5 to 95
0
Iron (Fe), % 0 to 0.1
45.6 to 52.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0