MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. EN 1.5525 Steel

C60800 bronze belongs to the copper alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 55
11 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 290
310 to 350
Tensile Strength: Ultimate (UTS), MPa 390
440 to 1440
Tensile Strength: Yield (Proof), MPa 150
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 18
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 360
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 94
240 to 640
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
16 to 51
Strength to Weight: Bending, points 14
16 to 36
Thermal Diffusivity, mm2/s 23
13
Thermal Shock Resistance, points 14
13 to 42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 92.5 to 95
0 to 0.25
Iron (Fe), % 0 to 0.1
97.7 to 98.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0