MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. EN 1.5535 Steel

C60800 bronze belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 55
11 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 290
320 to 370
Tensile Strength: Ultimate (UTS), MPa 390
450 to 1490
Tensile Strength: Yield (Proof), MPa 150
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 360
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 94
240 to 680
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
16 to 53
Strength to Weight: Bending, points 14
17 to 37
Thermal Diffusivity, mm2/s 23
13
Thermal Shock Resistance, points 14
13 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 92.5 to 95
0 to 0.25
Iron (Fe), % 0 to 0.1
97.6 to 98.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0