MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. SAE-AISI 1055 Steel

C60800 bronze belongs to the copper alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 55
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
72
Shear Strength, MPa 290
440 to 450
Tensile Strength: Ultimate (UTS), MPa 390
730 to 750
Tensile Strength: Yield (Proof), MPa 150
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
11
Electrical Conductivity: Equal Weight (Specific), % IACS 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
18
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 94
440 to 1070
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
26
Strength to Weight: Bending, points 14
23
Thermal Diffusivity, mm2/s 23
14
Thermal Shock Resistance, points 14
23 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0.5 to 0.6
Copper (Cu), % 92.5 to 95
0
Iron (Fe), % 0 to 0.1
98.4 to 98.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0