MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. N06985 Nickel

C60800 bronze belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 55
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
80
Shear Strength, MPa 290
480
Tensile Strength: Ultimate (UTS), MPa 390
690
Tensile Strength: Yield (Proof), MPa 150
260

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 1060
1350
Melting Onset (Solidus), °C 1050
1260
Specific Heat Capacity, J/kg-K 410
450
Thermal Conductivity, W/m-K 80
10
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 18
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 2.9
8.8
Embodied Energy, MJ/kg 48
120
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
250
Resilience: Unit (Modulus of Resilience), kJ/m3 94
160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 13
23
Strength to Weight: Bending, points 14
21
Thermal Diffusivity, mm2/s 23
2.6
Thermal Shock Resistance, points 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 92.5 to 95
1.5 to 2.5
Iron (Fe), % 0 to 0.1
18 to 21
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Residuals, % 0 to 0.5
0