MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. S32053 Stainless Steel

C60800 bronze belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 55
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
80
Shear Strength, MPa 290
510
Tensile Strength: Ultimate (UTS), MPa 390
730
Tensile Strength: Yield (Proof), MPa 150
330

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 80
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 18
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.9
6.1
Embodied Energy, MJ/kg 48
83
Embodied Water, L/kg 360
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
270
Resilience: Unit (Modulus of Resilience), kJ/m3 94
270
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
25
Strength to Weight: Bending, points 14
22
Thermal Diffusivity, mm2/s 23
3.3
Thermal Shock Resistance, points 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 92.5 to 95
0
Iron (Fe), % 0 to 0.1
41.7 to 48.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0