MakeItFrom.com
Menu (ESC)

C60800 Bronze vs. S45000 Stainless Steel

C60800 bronze belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C60800 bronze and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 55
6.8 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
76
Shear Strength, MPa 290
590 to 830
Tensile Strength: Ultimate (UTS), MPa 390
980 to 1410
Tensile Strength: Yield (Proof), MPa 150
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 210
840
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1050
1390
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 80
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 94
850 to 4400
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
35 to 50
Strength to Weight: Bending, points 14
28 to 36
Thermal Diffusivity, mm2/s 23
4.5
Thermal Shock Resistance, points 14
33 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.5
0
Arsenic (As), % 0.020 to 0.35
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 92.5 to 95
1.3 to 1.8
Iron (Fe), % 0 to 0.1
72.1 to 79.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0