MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 1.3576 Steel

C61300 bronze belongs to the copper alloys classification, while EN 1.3576 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 1.3576 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 550 to 580
490 to 1420

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
46
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.4
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 49
22
Embodied Water, L/kg 370
53

Common Calculations

Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
17 to 50
Strength to Weight: Bending, points 18
17 to 36
Thermal Diffusivity, mm2/s 15
12
Thermal Shock Resistance, points 19 to 20
14 to 42

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0 to 0.050
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.35 to 0.65
Copper (Cu), % 88 to 91.8
0 to 0.3
Iron (Fe), % 2.0 to 3.0
95.5 to 97.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.15
1.6 to 2.0
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0