MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 1.5535 Steel

C61300 bronze belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
11 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 370 to 390
320 to 370
Tensile Strength: Ultimate (UTS), MPa 550 to 580
450 to 1490
Tensile Strength: Yield (Proof), MPa 230 to 310
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 370
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
240 to 680
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
16 to 53
Strength to Weight: Bending, points 18
17 to 37
Thermal Diffusivity, mm2/s 15
13
Thermal Shock Resistance, points 19 to 20
13 to 44

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 88 to 91.8
0 to 0.25
Iron (Fe), % 2.0 to 3.0
97.6 to 98.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.9 to 1.2
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0