MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. Nickel 693

C61300 bronze belongs to the copper alloys classification, while nickel 693 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34 to 40
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 370 to 390
440
Tensile Strength: Ultimate (UTS), MPa 550 to 580
660
Tensile Strength: Yield (Proof), MPa 230 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 220
330
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 1050
1350
Melting Onset (Solidus), °C 1040
1310
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 55
9.1
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 3.0
9.9
Embodied Energy, MJ/kg 49
140
Embodied Water, L/kg 370
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
190
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
250
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 15
2.3
Thermal Shock Resistance, points 19 to 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.0 to 7.5
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 88 to 91.8
0 to 0.5
Iron (Fe), % 2.0 to 3.0
2.5 to 6.0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.15
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0