MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. SAE-AISI 1008 Steel

C61300 bronze belongs to the copper alloys classification, while SAE-AISI 1008 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
22 to 33
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 370 to 390
220 to 230
Tensile Strength: Ultimate (UTS), MPa 550 to 580
330 to 370
Tensile Strength: Yield (Proof), MPa 230 to 310
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
62
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 370
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
92 to 260
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
12 to 13
Strength to Weight: Bending, points 18
13 to 15
Thermal Diffusivity, mm2/s 15
17
Thermal Shock Resistance, points 19 to 20
10 to 12

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 88 to 91.8
0
Iron (Fe), % 2.0 to 3.0
99.31 to 99.7
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.5
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0