MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. 296.0 Aluminum

C61500 bronze belongs to the copper alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61500 bronze and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 3.0 to 55
3.2 to 7.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 480 to 970
260 to 270
Tensile Strength: Yield (Proof), MPa 150 to 720
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 220
420
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1040
630
Melting Onset (Solidus), °C 1030
540
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 58
130 to 150
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 13
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 3.2
7.8
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 380
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
110 to 220
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 16 to 32
24 to 25
Strength to Weight: Bending, points 16 to 26
30 to 31
Thermal Diffusivity, mm2/s 16
51 to 56
Thermal Shock Resistance, points 17 to 34
12

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
89 to 94
Copper (Cu), % 89 to 90.5
4.0 to 5.0
Iron (Fe), % 0
0 to 1.2
Lead (Pb), % 0 to 0.015
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 1.8 to 2.2
0 to 0.35
Silicon (Si), % 0
2.0 to 3.0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35