MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. AISI 304LN Stainless Steel

C61500 bronze belongs to the copper alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
7.8 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350 to 550
400 to 680
Tensile Strength: Ultimate (UTS), MPa 480 to 970
580 to 1160
Tensile Strength: Yield (Proof), MPa 150 to 720
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.1
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
140 to 1900
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
21 to 41
Strength to Weight: Bending, points 16 to 26
20 to 31
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 17 to 34
13 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
65 to 73.9
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 1.8 to 2.2
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0