MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. AISI 420 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
8.0 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 350 to 550
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 480 to 970
690 to 1720
Tensile Strength: Yield (Proof), MPa 150 to 720
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
620
Melting Completion (Liquidus), °C 1040
1510
Melting Onset (Solidus), °C 1030
1450
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.5
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.0
Embodied Energy, MJ/kg 52
28
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
380 to 4410
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
25 to 62
Strength to Weight: Bending, points 16 to 26
22 to 41
Thermal Diffusivity, mm2/s 16
7.3
Thermal Shock Resistance, points 17 to 34
25 to 62

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
82.3 to 87.9
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.8 to 2.2
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0