MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.4877 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
36
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 350 to 550
420
Tensile Strength: Ultimate (UTS), MPa 480 to 970
630
Tensile Strength: Yield (Proof), MPa 150 to 720
200

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1150
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 3.2
6.2
Embodied Energy, MJ/kg 52
89
Embodied Water, L/kg 380
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
100
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
22
Strength to Weight: Bending, points 16 to 26
20
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 17 to 34
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
36.4 to 42.3
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.8 to 2.2
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0