MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. SAE-AISI 8630 Steel

C61500 bronze belongs to the copper alloys classification, while SAE-AISI 8630 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
12 to 24
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 350 to 550
340 to 410
Tensile Strength: Ultimate (UTS), MPa 480 to 970
540 to 680
Tensile Strength: Yield (Proof), MPa 150 to 720
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
39
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.6
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.5
Embodied Energy, MJ/kg 52
20
Embodied Water, L/kg 380
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
340 to 840
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
19 to 24
Strength to Weight: Bending, points 16 to 26
19 to 22
Thermal Diffusivity, mm2/s 16
10
Thermal Shock Resistance, points 17 to 34
18 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
96.8 to 97.9
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 1.8 to 2.2
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0