MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. C72800 Copper-nickel

Both C61500 bronze and C72800 copper-nickel are copper alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 55
3.9 to 23
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Shear Strength, MPa 350 to 550
330 to 740
Tensile Strength: Ultimate (UTS), MPa 480 to 970
520 to 1270
Tensile Strength: Yield (Proof), MPa 150 to 720
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1040
1080
Melting Onset (Solidus), °C 1030
920
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 58
55
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
11
Electrical Conductivity: Equal Weight (Specific), % IACS 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
38
Density, g/cm3 8.4
8.8
Embodied Carbon, kg CO2/kg material 3.2
4.4
Embodied Energy, MJ/kg 52
68
Embodied Water, L/kg 380
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
260 to 5650
Stiffness to Weight: Axial, points 7.5
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 16 to 32
17 to 40
Strength to Weight: Bending, points 16 to 26
16 to 30
Thermal Diffusivity, mm2/s 16
17
Thermal Shock Resistance, points 17 to 34
19 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 89 to 90.5
78.3 to 82.8
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0 to 0.015
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 1.8 to 2.2
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.3

Comparable Variants