MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. S46800 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350 to 550
300
Tensile Strength: Ultimate (UTS), MPa 480 to 970
470
Tensile Strength: Yield (Proof), MPa 150 to 720
230

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
23
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
37
Embodied Water, L/kg 380
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
98
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
130
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
17
Strength to Weight: Bending, points 16 to 26
18
Thermal Diffusivity, mm2/s 16
6.1
Thermal Shock Resistance, points 17 to 34
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
76.5 to 81.8
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.8 to 2.2
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3
Residuals, % 0 to 0.5
0