MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. 295.0 Aluminum

C61800 bronze belongs to the copper alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61800 bronze and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 26
2.0 to 7.2
Fatigue Strength, MPa 190
44 to 55
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Shear Strength, MPa 310
180 to 230
Tensile Strength: Ultimate (UTS), MPa 740
230 to 280
Tensile Strength: Yield (Proof), MPa 310
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
640
Melting Onset (Solidus), °C 1040
530
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 64
140
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
35
Electrical Conductivity: Equal Weight (Specific), % IACS 14
100

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 3.1
7.9
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 420
77 to 340
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 25
21 to 26
Strength to Weight: Bending, points 22
27 to 32
Thermal Diffusivity, mm2/s 18
54
Thermal Shock Resistance, points 26
9.8 to 12

Alloy Composition

Aluminum (Al), % 8.5 to 11
91.4 to 95.3
Copper (Cu), % 86.9 to 91
4.0 to 5.0
Iron (Fe), % 0.5 to 1.5
0 to 1.0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.35
Silicon (Si), % 0 to 0.1
0.7 to 1.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.020
0 to 0.35
Residuals, % 0
0 to 0.15