MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. 6012 Aluminum

C61800 bronze belongs to the copper alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61800 bronze and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 26
9.1 to 11
Fatigue Strength, MPa 190
55 to 100
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 310
130 to 190
Tensile Strength: Ultimate (UTS), MPa 740
220 to 320
Tensile Strength: Yield (Proof), MPa 310
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
640
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 440
890
Thermal Conductivity, W/m-K 64
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
45
Electrical Conductivity: Equal Weight (Specific), % IACS 14
140

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 3.1
8.2
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 420
94 to 480
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
48
Strength to Weight: Axial, points 25
22 to 32
Strength to Weight: Bending, points 22
29 to 37
Thermal Diffusivity, mm2/s 18
62
Thermal Shock Resistance, points 26
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 86.9 to 91
0 to 0.1
Iron (Fe), % 0.5 to 1.5
0 to 0.5
Lead (Pb), % 0 to 0.020
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0 to 0.1
0.6 to 1.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.020
0 to 0.3
Residuals, % 0 to 0.5
0 to 0.15