MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. ASTM Grade HF Steel

C61800 bronze belongs to the copper alloys classification, while ASTM grade HF steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is ASTM grade HF steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
29
Fatigue Strength, MPa 190
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 740
550
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
17
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
3.2
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 420
180
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 18
4.2
Thermal Shock Resistance, points 26
12

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
18 to 23
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
60 to 73.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0