MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. EN 1.4542 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
5.7 to 20
Fatigue Strength, MPa 190
370 to 640
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 310
550 to 860
Tensile Strength: Ultimate (UTS), MPa 740
880 to 1470
Tensile Strength: Yield (Proof), MPa 310
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
860
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 64
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 420
880 to 4360
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
31 to 52
Strength to Weight: Bending, points 22
26 to 37
Thermal Diffusivity, mm2/s 18
4.3
Thermal Shock Resistance, points 26
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86.9 to 91
3.0 to 5.0
Iron (Fe), % 0.5 to 1.5
69.6 to 79
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0