MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. Nickel 59

C61800 bronze belongs to the copper alloys classification, while nickel 59 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is nickel 59.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 26
50
Fatigue Strength, MPa 190
320
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
84
Shear Strength, MPa 310
560
Tensile Strength: Ultimate (UTS), MPa 740
780
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 220
990
Melting Completion (Liquidus), °C 1050
1500
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 64
10
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 28
65
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.1
12
Embodied Energy, MJ/kg 52
160
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
320
Resilience: Unit (Modulus of Resilience), kJ/m3 420
280
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 18
2.7
Thermal Shock Resistance, points 26
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
0.1 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 86.9 to 91
0 to 0.5
Iron (Fe), % 0.5 to 1.5
0 to 1.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.2 to 62.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0