MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. C82500 Copper

Both C61800 bronze and C82500 copper are copper alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 26
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 740
550 to 1100
Tensile Strength: Yield (Proof), MPa 310
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 220
280
Melting Completion (Liquidus), °C 1050
980
Melting Onset (Solidus), °C 1040
860
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 64
130
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
20
Electrical Conductivity: Equal Weight (Specific), % IACS 14
21

Otherwise Unclassified Properties

Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 52
160
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 420
400 to 4000
Stiffness to Weight: Axial, points 7.5
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 25
18 to 35
Strength to Weight: Bending, points 22
17 to 27
Thermal Diffusivity, mm2/s 18
38
Thermal Shock Resistance, points 26
19 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 86.9 to 91
95.3 to 97.8
Iron (Fe), % 0.5 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.020
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.1
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.020
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5