MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. N07716 Nickel

C61800 bronze belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
34
Fatigue Strength, MPa 190
690
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
78
Shear Strength, MPa 310
580
Tensile Strength: Ultimate (UTS), MPa 740
860
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 64
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
75
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.1
13
Embodied Energy, MJ/kg 52
190
Embodied Water, L/kg 390
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
240
Resilience: Unit (Modulus of Resilience), kJ/m3 420
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 18
2.8
Thermal Shock Resistance, points 26
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
0 to 11.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0