MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. S41050 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
25
Fatigue Strength, MPa 190
160
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 89
77
Shear Modulus, GPa 44
76
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 740
470
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
720
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.9
Embodied Energy, MJ/kg 52
27
Embodied Water, L/kg 390
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
98
Resilience: Unit (Modulus of Resilience), kJ/m3 420
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 18
7.2
Thermal Shock Resistance, points 26
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
84.2 to 88.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0