MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. Grade Ti-Pd18 Titanium

C61900 bronze belongs to the copper alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 21 to 32
17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 570 to 650
710
Tensile Strength: Yield (Proof), MPa 230 to 310
540

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 220
330
Melting Completion (Liquidus), °C 1050
1640
Melting Onset (Solidus), °C 1040
1590
Specific Heat Capacity, J/kg-K 440
550
Thermal Conductivity, W/m-K 79
8.2
Thermal Expansion, µm/m-K 18
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.1
41
Embodied Energy, MJ/kg 51
670
Embodied Water, L/kg 380
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
1380
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 19 to 22
44
Strength to Weight: Bending, points 18 to 20
39
Thermal Diffusivity, mm2/s 22
3.3
Thermal Shock Resistance, points 20 to 23
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 83.6 to 88.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 3.0 to 4.5
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0 to 0.4