MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. Nickel 684

C61900 bronze belongs to the copper alloys classification, while nickel 684 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21 to 32
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
76
Shear Strength, MPa 370 to 410
710
Tensile Strength: Ultimate (UTS), MPa 570 to 650
1190
Tensile Strength: Yield (Proof), MPa 230 to 310
800

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1050
1370
Melting Onset (Solidus), °C 1040
1320
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 28
75
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 380
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
1610
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 22
40
Strength to Weight: Bending, points 18 to 20
30
Thermal Shock Resistance, points 20 to 23
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 83.6 to 88.5
0 to 0.15
Iron (Fe), % 3.0 to 4.5
0 to 4.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
2.5 to 3.3
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0