MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. C85200 Brass

Both C61900 bronze and C85200 brass are copper alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 21 to 32
28
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 570 to 650
270
Tensile Strength: Yield (Proof), MPa 230 to 310
95

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 220
140
Melting Completion (Liquidus), °C 1050
940
Melting Onset (Solidus), °C 1040
930
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 79
84
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
18
Electrical Conductivity: Equal Weight (Specific), % IACS 11
19

Otherwise Unclassified Properties

Base Metal Price, % relative 28
26
Density, g/cm3 8.3
8.4
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 51
46
Embodied Water, L/kg 380
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
59
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
42
Stiffness to Weight: Axial, points 7.6
7.0
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 19 to 22
8.9
Strength to Weight: Bending, points 18 to 20
11
Thermal Diffusivity, mm2/s 22
27
Thermal Shock Resistance, points 20 to 23
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 83.6 to 88.5
70 to 74
Iron (Fe), % 3.0 to 4.5
0 to 0.6
Lead (Pb), % 0 to 0.020
1.5 to 3.8
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.6
0.7 to 2.0
Zinc (Zn), % 0 to 0.8
20 to 27
Residuals, % 0 to 0.5
0 to 0.9