MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. ACI-ASTM CA6N Steel

C62300 bronze belongs to the copper alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18 to 32
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 570 to 630
1080
Tensile Strength: Yield (Proof), MPa 230 to 310
1060

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
740
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 54
23
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.5
Embodied Energy, MJ/kg 52
35
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
2900
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
38
Strength to Weight: Bending, points 18 to 20
30
Thermal Diffusivity, mm2/s 15
6.1
Thermal Shock Resistance, points 20 to 22
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
77.9 to 83.5
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.6
0
Residuals, % 0 to 0.5
0