MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. ACI-ASTM CN7M Steel

C62300 bronze belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
44
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 570 to 630
480
Tensile Strength: Yield (Proof), MPa 230 to 310
200

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
21
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
32
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.1
5.6
Embodied Energy, MJ/kg 52
78
Embodied Water, L/kg 390
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
110
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
17
Strength to Weight: Bending, points 18 to 20
17
Thermal Diffusivity, mm2/s 15
5.6
Thermal Shock Resistance, points 20 to 22
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 83.2 to 89.5
3.0 to 4.0
Iron (Fe), % 2.0 to 4.0
37.4 to 48.5
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.6
0
Residuals, % 0 to 0.5
0