MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. AISI 316 Stainless Steel

C62300 bronze belongs to the copper alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
8.0 to 55
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 360 to 390
350 to 690
Tensile Strength: Ultimate (UTS), MPa 570 to 630
520 to 1180
Tensile Strength: Yield (Proof), MPa 230 to 310
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
590
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.9
Embodied Energy, MJ/kg 52
53
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
130 to 1820
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
18 to 41
Strength to Weight: Bending, points 18 to 20
18 to 31
Thermal Diffusivity, mm2/s 15
4.1
Thermal Shock Resistance, points 20 to 22
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
62 to 72
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.6
0
Residuals, % 0 to 0.5
0