MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. AISI 440B Stainless Steel

C62300 bronze belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
3.0 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 360 to 390
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 570 to 630
740 to 1930
Tensile Strength: Yield (Proof), MPa 230 to 310
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 54
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.2
Embodied Energy, MJ/kg 52
31
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
57 to 110
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
27 to 70
Strength to Weight: Bending, points 18 to 20
24 to 45
Thermal Diffusivity, mm2/s 15
6.1
Thermal Shock Resistance, points 20 to 22
27 to 70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
78.2 to 83.3
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.6
0
Residuals, % 0 to 0.5
0