MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. ASTM Grade LC1 Steel

C62300 bronze belongs to the copper alloys classification, while ASTM grade LC1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is ASTM grade LC1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18 to 32
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 570 to 630
540
Tensile Strength: Yield (Proof), MPa 230 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.4
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 52
20
Embodied Water, L/kg 390
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
200
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
19
Strength to Weight: Bending, points 18 to 20
19
Thermal Diffusivity, mm2/s 15
13
Thermal Shock Resistance, points 20 to 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
97.6 to 99.05
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.6
0
Residuals, % 0 to 0.5
0