MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. EN 1.4982 Stainless Steel

C62300 bronze belongs to the copper alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 360 to 390
490
Tensile Strength: Ultimate (UTS), MPa 570 to 630
750
Tensile Strength: Yield (Proof), MPa 230 to 310
570

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
860
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
4.9
Embodied Energy, MJ/kg 52
71
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
830
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
27
Strength to Weight: Bending, points 18 to 20
23
Thermal Diffusivity, mm2/s 15
3.4
Thermal Shock Resistance, points 20 to 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
61.8 to 69.7
Manganese (Mn), % 0 to 0.5
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 1.0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.6
0
Vanadium (V), % 0
0.15 to 0.4
Residuals, % 0 to 0.5
0