MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. EN 1.7729 Steel

C62300 bronze belongs to the copper alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18 to 32
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 360 to 390
560
Tensile Strength: Ultimate (UTS), MPa 570 to 630
910
Tensile Strength: Yield (Proof), MPa 230 to 310
750

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.3
Embodied Energy, MJ/kg 52
49
Embodied Water, L/kg 390
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
1500
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
32
Strength to Weight: Bending, points 18 to 20
27
Thermal Diffusivity, mm2/s 15
11
Thermal Shock Resistance, points 20 to 22
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 83.2 to 89.5
0 to 0.2
Iron (Fe), % 2.0 to 4.0
94.8 to 97
Manganese (Mn), % 0 to 0.5
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.6
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Residuals, % 0 to 0.5
0