MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. Grade CX2MW Nickel

C62300 bronze belongs to the copper alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 18 to 32
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
84
Tensile Strength: Ultimate (UTS), MPa 570 to 630
620
Tensile Strength: Yield (Proof), MPa 230 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1550
Melting Onset (Solidus), °C 1040
1490
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 54
10
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
65
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.1
12
Embodied Energy, MJ/kg 52
170
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
290
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 21
19
Strength to Weight: Bending, points 18 to 20
18
Thermal Diffusivity, mm2/s 15
2.7
Thermal Shock Resistance, points 20 to 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
2.0 to 6.0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0 to 1.0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.6
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Residuals, % 0 to 0.5
0