MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. C70600 Copper-nickel

Both C62300 bronze and C70600 copper-nickel are copper alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 18 to 32
3.0 to 34
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
46
Shear Strength, MPa 360 to 390
190 to 330
Tensile Strength: Ultimate (UTS), MPa 570 to 630
290 to 570
Tensile Strength: Yield (Proof), MPa 230 to 310
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1050
1150
Melting Onset (Solidus), °C 1040
1100
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 54
44
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 13
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
33
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 52
51
Embodied Water, L/kg 390
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
16 to 290
Stiffness to Weight: Axial, points 7.6
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 19 to 21
9.1 to 18
Strength to Weight: Bending, points 18 to 20
11 to 17
Thermal Diffusivity, mm2/s 15
13
Thermal Shock Resistance, points 20 to 22
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Copper (Cu), % 83.2 to 89.5
84.7 to 90
Iron (Fe), % 2.0 to 4.0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
9.0 to 11
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5