MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. AISI 201 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 14
4.6 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 420 to 440
450 to 840
Tensile Strength: Ultimate (UTS), MPa 690 to 730
650 to 1450
Tensile Strength: Yield (Proof), MPa 270 to 350
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 53
38
Embodied Water, L/kg 400
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
230 to 2970
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
23 to 52
Strength to Weight: Bending, points 21 to 22
22 to 37
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 25 to 26
14 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
67.5 to 75
Manganese (Mn), % 0 to 0.3
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0