MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. EN 1.4980 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 14
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 420 to 440
630
Tensile Strength: Ultimate (UTS), MPa 690 to 730
1030
Tensile Strength: Yield (Proof), MPa 270 to 350
680

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
13
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
26
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 53
87
Embodied Water, L/kg 400
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
150
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
1180
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 23 to 25
36
Strength to Weight: Bending, points 21 to 22
28
Thermal Diffusivity, mm2/s 16
3.5
Thermal Shock Resistance, points 25 to 26
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
49.2 to 58.5
Manganese (Mn), % 0 to 0.3
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Residuals, % 0 to 0.5
0