MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. C67400 Bronze

Both C62400 bronze and C67400 bronze are copper alloys. They have 61% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 14
22 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 42
41
Shear Strength, MPa 420 to 440
310 to 350
Tensile Strength: Ultimate (UTS), MPa 690 to 730
480 to 610
Tensile Strength: Yield (Proof), MPa 270 to 350
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
130
Melting Completion (Liquidus), °C 1040
890
Melting Onset (Solidus), °C 1030
870
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 59
100
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
23
Electrical Conductivity: Equal Weight (Specific), % IACS 13
26

Otherwise Unclassified Properties

Base Metal Price, % relative 27
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 53
48
Embodied Water, L/kg 400
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
300 to 660
Stiffness to Weight: Axial, points 7.6
7.5
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 23 to 25
17 to 22
Strength to Weight: Bending, points 21 to 22
17 to 20
Thermal Diffusivity, mm2/s 16
32
Thermal Shock Resistance, points 25 to 26
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0.5 to 2.0
Copper (Cu), % 82.8 to 88
57 to 60
Iron (Fe), % 2.0 to 4.5
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 0.3
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.25
0.5 to 1.5
Tin (Sn), % 0 to 0.2
0 to 0.3
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants