MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. S34565 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11 to 14
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Shear Strength, MPa 420 to 440
610
Tensile Strength: Ultimate (UTS), MPa 690 to 730
900
Tensile Strength: Yield (Proof), MPa 270 to 350
470

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
28
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.2
5.3
Embodied Energy, MJ/kg 53
73
Embodied Water, L/kg 400
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
300
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
540
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
32
Strength to Weight: Bending, points 21 to 22
26
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 25 to 26
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
43.2 to 51.6
Manganese (Mn), % 0 to 0.3
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0